3.1 Proving System


A(X)qA(X)+B(X)qB(X)+A(X)B(X)qM(X)+C(X)qC(X)=0A(X)⋅q_A​(X)+B(X)⋅q_B​ (X)+A(X)⋅B(X)⋅q_M (X)+C(X)⋅q_C(X)=0
>

3.1.1 Lookup argument

ASAS2^kSAS
Alookuplookup selectorpermutation rule A(X)lookupAS_0

>S,A advice columns

iℓ_ii10
A,Sproof
A,SA',S'Z

Z(ωX)(A(X)+β)(S(X)+γ)Z(X)(A(X)+β)(S(X)+γ)=0Z(ωX)⋅(A'(X)+β)⋅(S '(X)+γ)−Z(X)⋅(A(X)+β)⋅(S(X)+γ)=0
0(X)(1Z(X))=0ℓ_0(X)⋅(1−Z(X))=0

>ω
=0i[0,2k)i∈[0,2^k)

Zi+1=Zi(Ai+β)(Si+γ)(Ai+β)(Si+γ)Z_{i+1}=Z_i*\frac{(A_i+β)(S_i+γ)}{(A'_i+β)(S'_i+γ)}
Zsk=Z0=1Z_{s^k}=Z_0=1

A S ASβγ21

A A A A
>???
A S S S
Ai=SiA'_i=S'_i,Ai=Ai1 A'_i=A'_{i-1}

(A(X)S(X))(A(X)A(ω1X))=0(A '(X)−S '(X))⋅(A '(X)−A '(ω^{ −1}X))=0

A0=S0A'_0=S'_0

0(X)(A(X)S(X))=0ℓ_0(X)⋅(A ’(X)−S '(X))=0

(A(X)A(ω1X))(A '(X)−A '(ω^{ −1}X))row=0
AAS(A)S (S)

>

PLONKt
lookup調
使u=2^k-t-1
q_blind: t10
q_last:: u10使

>uq_blind1
使

(1(qlast(X)+qblind(X)))(Z(ωX)(A(X)+β)(S(X)+γ)Z(X)(A(X)+β)(S(X)+γ))=0(1−(q_{last}(X)+q_{blind}(X)))⋅(Z(ωX)⋅(A'(X)+β)⋅(S'(X)+γ)−Z(X)⋅(A(X)+β)⋅(S(X)+γ))=0
(1(qlast(X)+qblind(X)))(A(X)S(X))(A(X)A(ω1X))=0(1−(q_{last}(X)+q_{blind}(X)))⋅(A '(X)−S '(X))⋅(A'(X)−A'(ω ^{−1}X))=0

row=0

0(X)(A(X)S(X))=0ℓ_0(X)⋅(A'(X)−S'(X))=0
0(X)(1Z(X))=0ℓ_0(X)⋅(1−Z(X))=0

ω2kω^{2^ k}Z1Z(ωu)Z(ω ^u )1.
i[0,u)i∈[0,u)Ai+βA_i +βSi+γS_i +γ0
βγ
Z(ωuZ(ω^u)01
Ai+βA_i +βSi+γS_i +γi0i<jui<j≦uZj=0Z_j =0
βγAS(A S )Ai+βA_i +βSi+γS_i +γ0

ASA S
SPedersen Commitment
A使1

R(x,y,...)RS (x,y,...)R
R

1


>Pedersen Commitment使

AS
Z
2A S